POSTER MIT BREAKOUT-SESSIONS

Introduction & Motivation

- LoRa is a low-throughput long-range wireless technology.
- LoRaWAN is a network architecture for LoRa.
- Limitations of LoRaWAN
- \rightarrow Low downlink rate and unpredictable latency.
- \rightarrow Hard to distribute applications across the Internet.
- \rightarrow Mandatory infrastructure backhaul.
- Potentials of time-slotted MAC layers [1] to overcome LoRaWAN limitations.
- We implement IEEE 802.15.4e DSME over LoRa in the Open Source IoT operating system RIOT

Background

IEEE 802.15.4e DSME MAC

- Coordinated communication based on superframes, which consist of: beacon slot (BS), contention access period (CAP) and contention free period (CFP).
- Two data transmission options:
- \rightarrow **CAP**: CSMA-CA
- \rightarrow **CFP**: Guaranteed Time Slot (GTS)

DSME over LoRa

- Proposal of DSME-LoRa [2]
- \rightarrow MAC and PHY mappings.
- \rightarrow Omnet++ based simulation environment.

Exploring DSME MAC for LoRa - A System Integration and First Evaluation

José Álamos*, Peter Kietzmann*, Thomas C. Schmidt*, Matthias Wählisch[†] * Hamburg University of Applied Sciences, Department of Computer Science, Germany [·] Freie Universität Berlin, Institute of Computer Science, Germany

Challenges

• Device de-synchronization due to long time on air.	Tar
\rightarrow Need for precise and accurate timer platform.	• B
• LoRa devices do not add RX timestamp.	\rightarrow
\rightarrow Requires estimation from radio IRQ events.	\rightarrow
• Concurrent hardware access between OS and DSME.	\rightarrow
\rightarrow Need to leverage HW operations to the OS.	Dej
• Constrained memory resources.	• V
\rightarrow Need for slim integration and data de-duplication.	• P

Implementation

Consumes $\approx 108 \text{ kB}$ of **ROM** and $\approx 12 \text{ kB}$ of **RAM**.

Experiment Deployment

rget Platform

- B-L072z-LRWAN1
- ARM Cortex-M0 @ 32 MHz
- 192 kB of ROM & 20 kB of RAM
- SX1276 LoRa transceiver

eployment on FIT IoT-LAB

- Very large scale IoT testbed with 1500+ nodes.
- Provides 20 x B-L072z-LRWAN1 nodes.

Experiment Results

Completion time and PRR for varying number of nodes

Transmission during CFP

References

Evaluation

Transmission during CAP

• Completion time increases with an increase of network size and a decrease of TX interval.

• PRR decreases with an increase of network size and a decrease of TX interval.

• Completion time and PRR do not vary with network size.

• MAC queue does not overflow $\Rightarrow \approx 0\%$ packet loss.

Achievements

✓ First implementation of DSME-LoRa on real hardware.

✓ Evaluation of the performance on resource contrained hardware in an open-access testbed.

✓ Validation of DSME-LoRa simulation environment.

Next steps

• Evaluation of energy consumption

 \rightarrow Deploy on battery-powered devices.

• IPv6 over DSME-LoRa

 \rightarrow Adapt concepts proposed by the IETF 6TiSCH group

[1] D. Zorbas and X. Fafoutis, "Time-Slotted LoRa Networks: Design Considerations, Implementations, and Perspectives," IEEE Internet of Things *Magazine*, vol. 4, no. 1, pp. 84 – 89, 3 2021.

[2] J. Alamos, P. Kietzmann, T. C. Schmidt, and M. Wählisch, "DSME-LoRa – A Flexible MAC for LoRa," in Proc. of 29th IEEE International Conference on Network Protocols (ICNP 2021), Poster Session. Piscataway, NJ, USA: IEEE, November 2021, accepted for publication.

Entwicklung eines KI-basierten Sensors zur Bestimmung der isotopologischen Zusammensetzung von Treibhausgasen

EINE NEUE METHODE FÜR DIE ERFORSCHUNG KLIMATISCHER PROZESSE

In der überwiegenden Zahl an Diskussionen bezogen auf den Klimawandel wird oftmals allein Kohlenstoffdioxid als Treibhausgas proklamiert. Dabei gerät beispielsweise der Einfluss von Methan

(ein kurzkettiger Kohlenwasserstoff) auf den Klimawandel in den Hintergrund. Es ist bewiesen, dass Methan einen 28-fach stärkeren Einfluss auf die klimatischen Temperaturänderungen im Vergleich zu Kohlenstoffdioxid bewirkt, bezogen auf 100 Jahre ([1], S. 2). Mit der neuen Methode wird es möglich sein, die Quellen der kurzkettigen Kohlenwasserstoffe in unserer Atmosphäre zu identifizieren.

Laserstrahlung des Interbandkaskadenlasers trifft auf Methan-Isotopologen.

Einleitung

Der anthropogene Verbrauch fossiler Brennstoffe generiert jährlich um 8 Gigatonen atmosphärischen Kohlenstoff (GtC/a). Im Gegensatz dazu speichern die arktischen Permafrostböden mindestens 600 GtC und die Weltmeere mehr als 11.000 GtC. Die Freisetzung eines Bruchteils der Kohlenstoffe aus den vorhergehend genannten Speichern, ausgelöst durch eine Temperaturerhöhung in der polaren Troposphäre, würde zu weitreichenden negativen klimatischen Effekten führen.

In diesem Moment werden aus den genannten Quellen Kohlenwasserstoffe freigesetzt. Das Isotopenverhältnis (¹²C/¹³C) der emittierten Kohlenwasserstoffe ermöglicht die Rückverfolgung zu ihren vielfältigen biogenen und anthropogenen Quellen.

Zielsetzung des Projektes

Das Hauptziel des Projektes ist die Entwicklung eines spektroskopischen Sensors zur isotopenselektiven Detektion von Treibhausgasen. Aufgrund der Tatsache, dass Methan, Ethan und Propan einen rund 28-fach stärkeren Einfluss auf die klimatischen Temperaturänderungen im Vergleich zu Kohlenstoffdioxid hat, liegt der Fokus zunächst auf den drei genannten kurzkettigen Kohlenwasserstoffen. in portablen Geräten eingesetzt zu werden. Die Interbandkaskadenlaser lassen sich zudem direkt durch den Betriebsstrom in ihrer emittierten Wellenlänge modulieren. Dadurch entfällt ein so genannter "Chopper", welcher den Laserstrahl mechanisch periodisch unterbricht und so dessen Modulation bewirkt. Die Möglichkeit der direkten Modulation trägt zur Portabilität des Lasers bei.

Photoakustische Spektroskopie (PAS)

Als spektroskopische Methode kommt die photoakustische Spektroskopie (PAS) zum Einsatz, da diese Methode aufgrund ihrer Eigenschaften für den hier beschriebenen Anwendungsfall prädestiniert ist. PAS basiert auf der Absorption der Laserstrahlung durch die zu analysierenden Gasmoleküle. Die absorbierte Energie der Photonen führt zu einem Anstieg der kinetischen Energie der Gasmoleküle und damit auch zur Temperaturerhöhung des Gases. Die durch die direkte Modulation des Lasers bewirkte periodische Temperaturerhöhung führt zu einer Druckänderung, dessen Schallwelle durch ein Mikrofon in ein elektrisches Signal umgewandelt wird. Für die Berechnung der isotopologischen Konzentrationen auf Basis der gewonnenen spektralen Daten wird ein Algorithmus auf Basis von künstlicher Intelligenz benötigt, welcher zu entwickeln ist. Durch diesen Ansatz lassen sich eine hohe Detektionssensitivität und -selektivität erreichen, sowie ein kurze Messzeit.

Methan-Isotopenverhältnisse verschiedener Quellen [2].

Quellen

- Methan Auswirkungen auf Klima und Gesundheit. URL: http://www.duh.de/uploads/ tx_duhdownloads/DUH_Hintergrundpapier_ Methan.pdf (besucht am 12.01.2022).
- Biogeosciences, 17, 3891–3901, 2020 (https://doi.org/10.5194/bg-17-3891-2020).
- Bahr, M.-S.; Wolff, M. (2021). Interferometric Technique for the Spectral Characterization of High Frequency Current-Modulated Mid-Infrared Semiconductor Lasers. Photonics, 8, 443. https://doi.org/10.3390/photonics8100443.
- Bahr, M.-S.; Wolff, M. (2021). Konferenz-Poster: Interferometric technique for the spectral characterization of current modulated midinfrared semiconductor lasers. Konferenz: International School of Quantum Electronics, 64th Course, Progress in Photoacoustic & Photothermal Phenomena.

Interbandkaskadenlaser

Distributed Feedback Interbandkaskadenlaser (DFB-ICL) werden als Laserstrahlungsquelle für die Spektroskopie eingesetzt. Es handelt sich bei den DFB-ICL um eine Weiterentwicklung des Quantenkaskadenlasers, sie sind erst seit wenigen Jahren auf dem Markt erhältlich. DFB-ICL ermöglichen eine ultra-hochaufgelöste Spektroskopie, da ihre spektrale Linienbreite weniger als $3 \cdot 10^{-4}$ nm beträgt. Damit eröffnen sich völlig neue Möglichkeiten in der Spektroskopie. Des Weiteren sind DFB-ICL sehr kompakt, robust und vergleichsweise einfach bei Raumtemperatur zu betreiben. Daher sind sie ebenfalls dafür geeignet,

Weitere Einsatzgebiete

Das Verhältnis der Methan kurzkettigen Isotopologen, bspw. ¹³CH₄ / ¹²CH₄ liefert fundamentale Erkenntnisse über den Kohlenstoffkreislauf der Erde. Des Weiteren ist das Mischungsverhältnis von Ethan, Propan und anderen nicht-Methan Kohlenwasserstoffen ein wichtiger Indikator für atmosphärische Oxidationsund Transportprozesse für regionale und globale Bereiche. Die für die beiden beschriebenen Fälle benötigten Messwerte ließen sich mit dem neu entwickelten Sensor erfassen.

- Loh, A.; Wolff, M. (2017). Absorption cross sections of 13C ethane and propane isotopologues in the 3 μm region. JQSRT, 203, 517-521.
- Loh, A.; Wolff, M. (2019). High Resolution Spectra of 13C Ethane and Propane Isotopologues Photoacoustically Measured using Interband Cascade Lasers near 3.33 and 3.38 μm, respectively, JQSRT, 227, 111-116.

HAW-HAMBURG.DE

Gefördert durch das

KONTAKT

M.Sc. Marc-Simon Bahr marc-simon.bahr@haw-hamburg.de +49 40 42875 8663 Prof. Dr. Marcus Wolff marcus.wolff@haw-hamburg.de +49 40 42875 8624

StaTuR—Prototyp eines Stacks aus tubulären Redox-Flow-Batteriezellen

Fabian Brandes, Peter Kuhn, Simon Ressel, Thorsten Struckmann

Hochschule für Angewandte Wissenschaften Hamburg, Heinrich Blasius Institut für physikalische Technologien

Einführung & Motivation

Eine vielversprechende Option für eine flexible Energiewandlung und – speicherung mit rasant wachsenden Forschungs– und Entwicklungsaktivitäten bilden Redox-Flow-Batterien (RFB).

Durch die Verschaltung einzelner Redox-Flow-Zellen zu Stacks und der Energiespeicherung über Redox-Paare in separat gelagerten Elektrolyten können stationäre Speichersysteme mit nahezu unabhängig skalierbarer Leistung und Kapazität realisiert werden.

Das Gesamtziel des im

Abb. 1: Funktionsweise einer Vanadium-RFB [4]

Dezember 2018 gestarteten BMWi-Verbundvorhabens StaTuR ist die Überführung einer tubulären Einzelzelle in den Prototyp eines Vanadium-Redox-Flow-Stacks. An dem bis November 2022 laufenden Projekt sind neben der HAW Hamburg die folgenden Partner beteiligt: Uniwell Rohrsysteme GmbH & Co. KG, fumatech-BWT GmbH und das Dechema Forschungsinstitut.

Ergebnisse

Modul– und Stackentwicklung:

- Entwicklung von Modul-/Stack-Konzepten
- Charakterisierung von Modulen

Vorteile tubulärer Ansatz:

- Kosteneffiziente Produktion durch Extrusion
- Verringerte Dichtungslängen
- Flexible elektrische Verschaltung

Abb. 2: Flow-Fields in planarer und tubulärer Form

Tubuläre All-Vanadium-RFB (VRFB)

Der Aufbau einer tubulären All-Vanadium-Redox-Flow-Batterie wird in Abbildung 3 gezeigt.

Komponenten:

- 1. Innere Elektrode aus Graphitfilz
- 2. Extrudierter innerer
 Stromsammler aus Graphitcompound mit eingeklebtem Kupferdraht
 3. Extrudierte Membran

Abb. 4: 4 aggregierte Zellen der Generation 0 (oben) und zugehörige elektrische Verschaltungen

Kontinuierliche Verbesserung der Zellperformance:

- Anpassung der Geometrie
- Auswahl des Materials anhand planarer Tests
- Verbesserung des Fügeprozesses
- Charakterisierung der Zellen

Abb. 6: Zellspannung in V über Stromdichte in mA/ cm² ("Polarisationskurve") der Zell-Generationen 0, 1 und 1.1

Multiskalen-Modellierung:

- Design-Tool zur Auslegung tubulärer Stacks
- Unterstützende FEM-Modellierung

Sonstiges:

• Entwicklung zur in-situ Ladezustandsbestimmung

Abb. 7: Operationen innerhalb eines Zeitschrittes im Design-Tool

Abb. 5: Modul aus 5 Zellen der aktuellen Generation

- 4. Äußere Elektrode aus Graphitfilz
- 5. Extrudierter äußerer Stromsammler aus Graphitcompound mit aufgeklebter Kupferfolie

Abb. 3: Tubuläre Einzelzelle und Komponenten [1]

Die tubuläre Struktur findet ebenfalls Anwendung im HAW-Projekt Tubulyze, in dem Wasserstoff-Elektrolysezellen in tubulärer Form entwickelt werden.

[2,3], abgeleitetes Projekt VaMoS

Ausblick

Mit dem finalen Einzelzell-Design werden unter Berücksichtigung der Erfahrungen aus den Prototypen-Tests mehrere Module aufgebaut und charakterisiert. Anschließend wird das Verschalten der Module zu Stacks erfolgen. Konzepte für Systeme im kW-Bereich werden simuliert und bewertet. Zudem soll ein einfacher Demonstrator aufgebaut werden.

Supported by:

E-Mail: fabian.brandes@haw-hamburg.de **Telefon:** +49 40 42872 8736

Webseite AG: https://www.haw-hamburg.de/hochschule/technik-und-informatik/ departments/maschinenbau-und-produktion/forschung/forschungsgruppen/batterie-undbrennstoffzellentechnik/

[1] Ressel, Simon, et al. "An all-extruded tubular vanadium redox flow cell - Characterization and model-based evaluation", Journal of Power Sources Advances 12 (2021): 100077

[2] Ressel, Simon, et al. "State of charge monitoring of vanadium redox flow batteries using half cell potentials and electrolyte density." Journal of Power Sources 378 (2018): 776-783.

[3] Struckmann, Thorsten, Peter Kuhn, and Simon Ressel. "A combined in situ monitoring approach for half cell state of charge and state of health of vanadium redox flow batteries." *Electrochemica Acta* 362 (2020): 137174

[4] Ressel, Simon. "*Tubular all vanadium and vanadium/air redox flow cells."* Diss. Universitat Politècnica de València, 2019.

FAKULTÄT TECHNIK UND INFORMATIK

Department Maschinenbau und Produktion Heinrich-Blasius Institut Für Physikalische Technologien

Development of a state of charge/state of health sensor for vanadium redox flow batteries

Niklas Janshen^{1),2)}, Antonio Chica Lara²⁾, Thorsten Struckmann¹⁾

1) Hochschule für angewandte Wissenschaften, Heinrich-Blasius –Institut für Physikalische Technologien. Hamburg, Deutschland

2) Instituto de Tecnologia Química, UPV-CSIC, València, Spain

Introduction and motivation

Vanadium redox flow batteries (VRFBs) are a promising technology for stationary long-term energy storage, because of their independent scalability of power and capacity, their theoretically low self-discharge and potentially high life cycle.

Problems:

Fig.1 - Schematic of a Vanadium redox-flow battery [2].

- VRFB operation is accompanied by capacity loss and half-cell imbalances caused by side reactions and crossover through the membrane [1].
- In commercially operated VRFB systems the SOC is estimated by using a cell voltage based on both half-cells or on coulomb counting.
- \Rightarrow Imbalances cannot be detected, the theoretical SOC range cannot be used and states of high side reactions and crossover cannot be avoided.

Methods

- Implementation of new SOC-monitoring methods (pH-value, conductivity, viscosity and UV/Vis spectroscopy) and combination with already established methods (electrolyte half-cell potentials, density, coulomb counting and OCV).
- Implementation of a fill level measurement and potentiometric titration for crossover detection and quantification.
- Short and long-term measurements to establish an extensive data base.
- Correlation of crossover related quantities on the basis of overall measured information of electrolyte to establish a crossover and SOH model.
- Development of a sen-

Research requirements

A sensor which measures the SOC of both half-cells independently and a thorough understanding of the crossover through the membrane is needed to reliably describe the state of health (SOH) of the VRFB and to enable an efficient use of the theoretical SOC range.

State of charge monitoring methods

Fig. 2 - Overview of SOC monitoring methods for VRFBs.

Crossover

sor concept to measure Fig. 4 - Test rig for single-cell vanadium redox-flow the SOC/SOH of a VRFB. battery tests and state of health sensor development.

Preliminary works

SOC-monitoring via electrolyte half-cell potentials and electrolyte density

Fig. 5 - SOC of PHC (blue) and NHC (black) via electrolyte half-cell potentials [4].

• Stable over time, can be used for the calibration of other SOCmonitoring methods.

Fig. 6 - SOC of NHC via density (red) and reference (blue) half-cell via potentials [5].

• Shifts over time due to crossover effects and can thus be used to characterize the crossover.

The vanadium electrolyte can cross the membrane as bulk electrolyte or as individual species. In addition to the species depicted in figure 3 water can also cross the membrane.

Research project VaMoS

This dissertation is conducted within the research project VaMoS which is funded by the German Federal Ministry for Economic Affairs and Energy. VaMoS is supervised by a project associated committee comprised of operators of VRFBs, manufacturer of VRFB components and sensor and measurement technology specialists. The project is done in cooperation with DECHE-MA Research Institute (DFI).

Supported by: **CONTACT** REFERENCES [3] Ressel et al. (2018). State of charge monitoring of vanadium redox [1] Haisch, T., Ji, H., & Weidlich, C. (2020). Monitoring the state of Federal Ministry charge of all-vanadium redox flow batteries to identify crossover flow batteries using half cell potentials and electrolyte density. Journal for Economic Affairs of electrolyte. Electrochimica Acta, 336, 135573. of Power Sources, 378, 776-783. e-mail: Niklas.Janshen@haw-hamburg.de and Energy [2] Ressel, Simon, (2019). Tubular all vanadium and vanadium/air re-[4] Struckmann et al. (2020). A combined in situ monitoring approach phone: +49 40 428 75-8716 dox flow cells. [Doctoral dissertation, Universitat Politècnica de Vafor half cell state of charge and state of health of vanadium redox flow batteries. Electrochimica Acta, 362, 137174. lència]. on the basis of a decision AG-Homepage by the German Bundestag

FAKULTÄT TECHNIK UND INFORMATIK

Department MuP Labor für Elektrische Mobilität Forschungsgruppe TIQ

Drehgeberloses Modell für Position und Drehzahl permanentmagneterregter Synchronmaschinen

AUTONOME FAHRPLATTFORM

Im Teilprojekt Autonome Fahrplattform werden an der HAW Hamburg sensorlose Regelverfahren für Drehfeldmaschinen weiterentwickelt. Ziel dieses Forschungsvorhabens ist es, den Aufbau eines Fahrzeug-

Abb. 1: MRAS-Verfahren zur drehgeberlosen Bestimmung von Drehwinkel und Drehzahl [2]

Antriebsstrangs durch den Verzicht auf Positionssensoren zu vereinfachen, Bauraum einzusparen und dennoch den realen Antrieb drehmoment- und drehzahlgenau zu regeln. Für die erste Anwendung ist der Antrieb eines autonomen Logistikfahrzeugs, welches im Projekt Testfeld Intelligente Quartiersmobilität (TIQ) entwickelt wird, vorgesehen.

Abb. 2: Messergebnisse der drehgeberlos geregelten permanentmagneterregten Synchronmaschine (PMSM) bei unterschiedlichen Schaltfrequenzen [2]

a b

Einleitung

Der Vorteil der elektrischen Energie liegt in der mannigfaltig technisch beherrschbaren Umwandlung und Übertragung, sie zählt zu den wichtigsten Schnittstellen zwischen Primär- und Nutzenergie. Im Mai 1834 stellte Moritz Jacobi die erste rotierende elektrische Maschine vor, welche eine größere mechanische Leistung bereitstellen konnte und legte somit den Grundstein für die zweite industrielle Revolution. Im Jahr 1974 kam es mit dem u.a. an der TU Braunschweig entwickelten Verfahren der Feldorientierung zur Regelung der Drehfeldmaschine zu einer weiteren wichtigen Innovation in der Antriebstechnik. Diese ermöglichte, durch die Drehmoment- und Drehzahlregelung von umrichtergespeisten Drehfeldmaschinen, die Erschließung von deutlich effizienteren Prozessen der elektromechanischen Energiewandlung, wobei stets die Kenntnis von Position oder Drehzahl unerlässlich ist (Abb. 4).

Abb. 4: Feldorientierte Regelung der

systems erhöhen, Bauraum sparen oder gar die redundante Auswertung eines sicherheitskritischen Systempfads ermöglichen, vielfältige Gründe, sensorlose Regelungen weiterzuentwickeln.

Aktueller Stand der Forschung

Im kritischen Betriebsbereich bei niedrigen Statorfrequenzen bzw. Drehzahlen der PMSM kommen sensorlose Verfahren, die lineare Maschinenmodelle nutzen, an Genauigkeits- und Stabilitätsgrenzen. Nahezu alle bei niedrigen Statorfrequenzen funktionsfähigen Verfahren applizieren daher Testsignale, um die PMSM anzuregen oder gezielt Maschinenunsymmetrien auszuwerten. Dadurch wird dieser Betriebsbereich zwar zuverlässig erschlossen, jedoch ergeben sich neue Nachteile hinsichtlich des Schwingungsverhaltens, der Regelgüte sowie sogar der Geräuschemission des Antriebs. Ein Ziel ist daher, den kritischen Betriebsbereich, bei dem zusätzlich Testsignale eingesetzt werden, möglichst stark einzugrenzen.

Akustik und EMV, Störanfälligkeit und benötigter Laufzeit auf dem zu implementierenden Zielsystem. Im Fall eines weit abzudeckenden Drehzahlbereichs kommt es oft zum Einsatz von kombinierten Verfahren, bei welchem jeweils das für den Arbeitspunkt optimierte Verfahren aktiv ist.

Im Fokus der derzeitigen Forschung liegen adaptive Verfahren, welche die Motorparameter kontinuierlich bestimmen. Dies ermöglicht, aufgrund der arbeitspunktabhängigen Maschineneigenschaften, eine maximale Ausnutzung des angesteuerten Antriebs.

Untersuchungsdesign und Methodik

Ein adaptives Referenzmodell, welches das nicht lineare Systemverhalten von Antrieben bestimmt, stellt hohe Anforderungen an die Prozessor-Leistung des jeweiligen Zielsystems. Zudem zeigten an der HAW durchgeführte Untersuchungen eines modelladaptiven Verfahrens (Abb. 1) zur drehgeberlosen Bestimmung von Position und Drehzahl einer PMSM bei unterschiedlichen Schaltfrequenzen, dass sich die Abweichungen des ermittelten zum gemessenen Drehwinkel im niedrigen Drehzahlbereich mit steigender Schaltfrequenz reduzieren [2] (Abb. 2). Die Grundstruktur des Verfahrens ist nach dem Grundwellenmodell der PMSM aufgebaut. Dieses stößt jedoch gerade im Bereich der magnetischen Sättigung an seine Grenzen und eine Erweiterung der Modellstruktur hat stetig steigende Rechenlaufzeiten zur Folge. Dabei kann auf dem Gebiet der Künstlichen Intelligenz, mit den verschiedenen Methoden zur Approximation einer Nichtlinearität, die Lösung liegen.

Abb. 3: Modellbasierte Systementwicklung von der Simulationsumgebung (a) über codegenerierte Implementierung auf dem Zielsystem (b) bis zur Motoransteuerung (c) umrichtergespeisten permanentmagneterregten Synchronmaschine (PMSM)

Moderne Antriebstechniklösungen, z.B. im Bereich mobiler Arbeitsmaschinen, der Elektromobilität oder der Industrieanwendungen, erfordern Antriebssysteme mit hoher Leistungsdichte, hohem Wirkungsgrad und guten regelungstechnischen Eigenschaften. Die PMSM erfüllt dieses Anforderungsprofil bei attraktiven Systemkosten in einem weiten Anwendungsspektrum. Darüber hinaus ist es zusätzlich vorteilhaft, auch auf einen Positions- oder Drehzahlsensor zu verzichten. Dabei sind erzielbare Kostenvorteile sowie mögliche Systemvereinfachungen, welche die Zuverlässigkeit und Lebensdauer des Antriebs-

Abb. 5: Klassifikation ausgewählter Verfahren zur positionssensorlosen Regelung elektrischer Maschinen [1]

Wie in Abb.5 dargestellt, teilen sich die sensorlosen Verfahren in Gruppen und Untergruppen auf, wobei die Haupteinteilung hier vom adressierten Drehzahlbereich ausgeht. Weitere Abgrenzungen liegen in der Genauigkeit, Dynamik, Parametersensibilität, Emissionen durch Ziel wäre es, mit neuronalen Netzen unbekannte Nichtlinearitäten nachzubilden und durch Anlernen vereinfachte neuronale Beobachter zu entwickeln. Die modellbasierte Systementwicklung ermöglicht es anschließend, die nach dem Signalflussplan dargestellten Verfahren mittels Codegeneratoren auf einem Microcontroller zu implementieren (Abb. 3) und am realen System zu validieren.

[1] G. Wang, M. Valla und J. Solsona, "Position Sensorless Permanent Magnet Synchronous Machine Drives—A Review", IEEE Transactions on Industrial Electronics, Bd. 67, Nr. 7, S. 5830–5842, Juli 2020, doi: 10.1109/TIE.2019.2955409.

[2] M. Brüns, C. Rudolph und T. Müller, "Drehgeberlose, MRAS-basierte Bestimmung von Position und Drehzahl einer PMSM bei unterschiedlichen Taktfrequenzen und GaN-FET-Wechselrichter", in ETG-Fachbericht, 2021, Bd. 164, S. 190–199. Zugegriffen: Jan. 11, 2022. [Online]. Verfügbar unter: https://reposit.haw-hamburg.de/handle/20.500.12738/11968

KONTAKT

Forschungsgruppe TIQ Berliner Tor 13, 20099 Hamburg

Prof. Dr. Christian Rudolph / M. Sc. Michael Brüns michael.bruens@haw-hamburg.de / 040 42875 8801

Simultaneous 2D and 3D turbulent flows in **Faraday Waves**

Hamburg University of Technology

RAFFAELE COLOMBI^{1,2}, NICLAS ROHDE¹, MICHAEL SCHLÜTER¹, ALEXANDRA VON KAMEKE² ¹INSTITUTE OF MULTIPHASE FLOWS, HAMBURG UNIVERSITY OF TECHNOLOGY, GERMANY

²DEPARTMENT OF MECHANICAL ENGINEERING AND PRODUCTION MANAGEMENT, HAMBURG UNIVERSITY OF APPLIED SCIENCES, GERMANY

In nature there are turbulent flows that are neither exclusively 2D nor 3D but are forced towards one state or the other by boundary conditions, such as varying stratification. The study of these flows focuses on the occurrence of an inverse energy cascade, typical of 2D turbulent flows, in shallow fluid layers, as well as the transition from 2D to 3D turbulence in non-shallow fluid layers and vice versa. The understanding of these properties is fundamental for developing accurate models of e.g. oceanic and atmospheric flows. For experimental testing, benchmarking flows exhibiting an inverse cascade are electro-magnetically-driven flows and Faraday flows occurring on the surface of parametrically-excited Faraday waves [1, 2].

Fig. 1. a) Perpetual Ocean – Simulation of ocean surface currents [Source: Greg Shirah, NASA Goddard Space Flight Center]. b) Pattern of waves in water at a forcing frequency $f_f = 50$ Hz. c) Visualization of fluorescent tracer particles trajectories in the Faraday flow Faraday waves in w on the fluid surface.

Set-up

A function generator (1) is used to trigger the high-speed camera (2) and to drive the electromagnetic shaker (3) to vertically oscillate a cylindrical container of 30 cm diameter (4) filled with 3 cm layer of DI water. Accelerometers (5) are used to determine the forcing acceleration, and all signals are monitored through a digitizer (7). Both triggering signals are synchronized so that the cameras captures the still surface frames in the Faraday waves. Illumination of neutrally buoyant red fluorescent tracer particles for PIV is performed with a wave argon-ion laser sheet (8, 9) or with LED (for surface measurements, to avoid reflection and refraction at water-air interface). The camera and the laser sheet can be adjusted at different horizontal planes (a), or rotated for measuring at the vertical cross-sectional plane (b).

Fig. 3. Detail of positioning of horizontal and vertical measurement planes (a) and b).

Forcing acceleration	$\mathbf{a}_{f} = 0.47 \; g, 0.70 \; g$
Forcing frequency	$f_f = 50 \; \mathrm{Hz}$
Resulting Faraday waves frequency	$f_W = 25 \text{ Hz}$
Characteristic Faraday wavelength	$\lambda_F \approx 10 \text{ mm}$
Camera imaging rate	$f_{\rm cam} = 400 \; {\rm fps}$
Camera resolution	2560 × 1600 px
Horizontal planes positions	h = [4, 21, 27, 30] mm
Tracer particles diameter	$d = 10 - 45 \mu{\rm m}$

40

Horizontal Coordinate x

h = 27 mm

1100

-0.00

-0-0-0-0-0-

mber k

Fig. 6. Wavenumber spectrum of kinetic energy E(k), net energy fluxes $\Pi_E(k)$ and net enstrophy fluxes $\Pi_Z(k)$ at different horizontal planes for forcing accelerations $a_f = 0.47$ g and 0.70g (blue and red).

60

/ mm

 $h = 21 \, {\rm mm}$

1 1 1 1 1 1 × K

-9 44

Wavenumber $k \neq k$

Results

- Three different flow-regimes identified at different depths:
 - 1. Highly turbulent Faraday Flow on fluid surface: multiple vortices with different length scales and regions of jet-like flow accelerated in between.
 - Transition layer with depth $\approx \lambda_f$ (10 mm) with exponential decay in velocity and increased flow divergence in 3D bulk flow. Time scales in the flow increase as structures 2. become larger in size and temporally persistent.

5.

vertical

0.47 g at the

sectional plane

......

mm²

R(k)

'nm²

 $I_E(k)$ $I_{\tau}(k)$

= 30 mm (surface)

cross-

- 3 For $h \leq 20$ mm larger flow structures oriented in a dominant direction with long temporal scales [3].
- Strong and confined vertical jets cause explosive downward transport of momentum, injecting energy in the 3D flow structures below the surface. Jets dissolve at approx. 1 Faraday wavelength below the surface and cause generation of vortices [4].
- Double cascade feature of 2D turbulence in the Faraday flow at the surface is well resolved with sharp bend in energy spectrum slope at k≈k inj.

Fig. 4.: Tracer particles at

forcing acceleration a_f

0.47 g at different horizontal planes (fluid

surface, h = 30 mm, a) and at h = 21 mm, b)).

The particle streaks are

averaging subsequent raw

further show the overlaid

fields $\boldsymbol{u} = (u, v)$ (every

second arrow shown)

bv

images.

0.47 g

obtained

particle

enlargement

corresponding

instantaneous

Inverse energy cascade and direct enstrophy cascade validated by negative net energy fluxes and positive net enstrophy fluxes

time

The

panel

elocity

Simultaneous existence of direct energy cascade at planes below the surface [4].

x/mm

Heinrich-Blasius-Institut

[1] v. Kameke et al., Phys. Rev. Lett. 107, 074502, 2011 [2] v. Kameke et al., Phys. Rev. Lett. 110, 088302, 2013 [3] Colombi et al., Experiments in Fluids. 62 (8), 2021 [4] Colombi et al., 2021, [under review]

контакт Raffaele Colombi, MSc., c/o Prof. Dr. Alexandra von Kameke Professur für Experimentalphysik und Angewandte Informatik hambunggde 40 42875-8624 , alexandra.vonkameke@haw

H 20

Optimization of Chemical Reactions with Tailored Flow Structures

Heinrich-Blasius-Institut FÜR PHYSIKALISCHE TECHNOLOGI

F. Kexel¹, <u>A. v. Kameke²</u>, M. Hoffmann¹, M. Schlüter¹

1 Hamburg University of Technology, Institute of Multiphase Flows, Germany

2 Hamburg University of Applied Sciences, Department Mechanical Engineering and Production, Germany

Results & Discussion

Concentration MNIC & DNIC based on Beer-Lambert:

Motivation & Aim

Aim: Unveiling the influence of fluid dynamics on the selectivity of a competitive-consecutive gas liquid reaction using Taylor bubbles

Fig. 1: Schematics of a competitive-consecutive reaction

- > Determination of the velocity fields in the bubble wake by means of PIV
- > Measuring the temporal and spatial resolved concentration field in a bubble wake
- Determination of the temporal and spatial selectivity in the bubble wake

aging UV-VIS and PIV measure Fig. 3: Scheme of the experimental setups at the IMS used for

HOCHSCHULE FÜR ANGEWANDTE WISSENSCHAFTEN HAMBURG

Fakultät TI / Dpt. Maschinenbau + Produktion Heinrich-Blasius-Institut für Phys. Technologien Berliner Tor 21, D-20099 Hamburg

- > Flow structures and mixing patterns in organic solvent strongly deviates from known flown structures in aqueous systems [5]
- Mixing within the bubble wake strongly influences the selectivity
- High correspondence between flow structures, concentration fields and spatial/temporal selectivity

Further Work & Outlook

- > Applying 4D-PTV for the visualization of 3D Motion in the bubble wake
- > Transferring gained knowledge to freely ascending bubbles > Available now: Final report "Reactive Bubbly Flows"
- The authors gratefully acknowledge the financial support by the DFG within the priority program SPP 1740 "Reactive Bubbly Flows" (SCHL 617/12-2)

Besagni et al., ChemEngineering 2018, 2 (2), 13.
 Besagni et al., ChemEngineering 2018, 2 (2), 13.
 Kastens et al., Chem. Eng. Technol. 2017, 40 (8), 1494–1501
 Kevel et al., Chem. Ing. Tech. 2021, 93 (5) (accepted)
 Kevel et al., Chem. Ing. Tech. 2021, 93 (5) (accepted)
 A. v. Kameke, et al., Chem. Eng. Sci. 2019, 207, 317–326

FAKULTÄT TECHNIK UND INFORMATIK Maschinenbau und Produktion

Wirtschaftlich optimale Messstrategie für Welligkeiten auf Zahnrädern

KLEINSTE PERIODISCHE ABWEICHUNGEN AUF DEN ZAHN-FLANKEN MIT MINIMALEM MESSAUFWAND SICHER ERKENNEN

Wellige Oberflächen auf Zahnrädern können laute Getriebe verursachen. Die Amplituden dieser Welligkeiten liegen im Submikrometerbereich. Diese kleinsten Abweichungen zu erkennen ist anspruchsvoll.

Im Forschungsvorhaben werden spezielle Strategien entwickelt, damit die Erkennung auch mit möglichst geringem Messaufwand gelingt.

Taktile Messung eines Zahnrades

Evolventische Verzahnung mit überlagerten Welligkeiten, Amplituden stark überhöht dargestellt

Für die Produktion leiser Getriebe müssen die eingesetzten Verzahnungen höchste Qualitätsanforderungen erfüllen. Aus diesem Grund werden in der Verzahnungsfertigung spezialisierte und sehr genau arbeitende Werkzeugmaschinen eingesetzt. Auch auf den genauesten Maschinen kann es jedoch zu Abweichungen im Fertigungsprozess kommen. Bei den meisten der aktuell eingesetzten Verfahren erfolgt eine kontinuierlich wälzende Bearbeitung der Zahnflanken mit dem Werkzeug. Neben vielen Vorteilen haben diese Verzahnverfahren aber auch den Nachteil, dass Störungen im Bearbeitungsprozess periodische Strukturen auf den Zahnflanken verursachen können. Diese Strukturen werden als Welligkeiten bezeichnet. Auch wenn die Amplituden der Welligkeiten sehr klein sind, können sie zu Anregungen im Getriebe und somit zur Geräuschentstehung führen.

WELLIGKEITSANALYSE & URSACHENSUCHE

In der klassischen Verzahnungsmesstechnik werden Maß-, Form- und Lageabweichungen betrachtet, eine ergänzende Welligkeitsanalyse der Messkurven rückt aber immer mehr in den Fokus. Diese Welligkeitsanalyse ist anspruchsvoll, da für eine funktionsbezogene Auswertung nicht nur die Welligkeiten auf den einzelnen Zahnflanke zu betrachten sind, sondern auch deren Kombination zu einem gemeinsamen Signal. Mit diesen spezialisierten Auswertealgorithmen können die gemessenen Welligkeiten den Ergebnissen der Geräuschprüfung zugeordnet werden. Gleichzeitig ermöglicht diese Auswertemethode Rückschlüsse auf die Entstehungsmechanismen. Die Verknüpfung zwischen Geräusch, Welligkeit und Ursache ist der Schlüssel um die richtigen Korrekturmaßnahmen abzuleiten und Qualitätsregelkreise aufzubauen.

Verzahnungsmessgerät mit 4 Messachsen (Firma Klingelnberg) Zahnflanke eines leisen und eines lauten Zahnrades. Die Farbcodierung zeigt die Abweichung von der Sollgeometrie

VERZAHNUNGSMESSTECHNIK AN DER HAW

Sind die verursachten Geräusche unzulässig hoch, entstehen zusätzliche Kosten. Für eine wirtschaftliche Produktion ist es deshalb entscheidend, das Auftreten von Welligkeiten bereits auf den Zahnrädern noch vor der Getriebemontage zu erkennen. Zur Messung von Verzahnungen werden spezialisierte Messgeräte eingesetzt, die eine eigene Untergruppe der Koordinatenmesstechnik bilden. Ein solches Verzahnungsmessgerät steht dem Institut für Produktionstechnik zur Verfügung und wird in den Forschungsvorhaben genutzt. Qualitätsregelkreis für die Produktion leiser Getriebe

EFFIZIENTE MESS- UND AUSWERTESTRATEGIEN

Ein entscheidender Faktor im Aufbau solcher Qualitätsregelkreise ist die eingesetzte Messstrategie. Gerade für produktionsnahe Messungen in der Serienfertigung beeinflusst der Messaufwand maßgeblich die Wirtschaftlichkeit. Im aktuellen Forschungsvorhaben werden deshalb Strategien entwickelt, die bei möglichst kleinen Messumfängen dennoch ein sicheres Prozessmonitoring erlauben und eine effiziente Fertigungsüberwachung ermöglichen.

HAW-HAMBURG.DE

KONTAKT

Institut für Produktionstechnik

Schwerpunkt Fertigungsmesstechnik

Prof. Dr. Günther Gravel guenther.gravel@haw-hamburg.de Dipl.-Ing. Matthias Fath <u>m.fath@haw-hamburg.de</u>

FAKULTÄT TECHNIK UND INFORMATIK Fahrzeugtechnik und Flugzeugbau

Optimierung des Entwicklungsprozesses eines hybriden Antriebsstrangs bei Anwendung von realem System und Simulationsmodell unter **Einbeziehung des Faktor Mensch**

Verifikation und Validierung der virtuellen **Antriebsstrang-Entwicklung**

Frontloading in der Automobilindustrie beschreibt das Vorverlagern von Komponententests in frühe Entwicklungsstadien. So kann mithilfe einer Simulation der CO₂-Ausstoß von Fahrzeugantrieben bewertet werden, ohne, dass ein Testfahrzeug entwickelt werden muss. Eine hohe Genauigkeit der Simulation bedeutet somit eine Kosten- & Zeitersparnis im Entwicklungsprozess. Voraussetzung dafür ist, dass die Simulationsmodelle verifiziert und für den Anwendungsfall validiert sind. In diesem Projekt wird eine Methode zur Verifikation und Validierung einer Simulation eines Hybridfahrzeugs entwickelt. Dabei steht die Frage im Vordergrund: Wie müssen die Daten für eine erfolgreiche Überprüfung und ein einfaches Verständnis visualisiert werden?

Haussel Wirbelstrombremse (passive Belastungsmaschine) VKM: Verbrennungskraftmaschine SG: SteuergenM

Verifikation: Durch die Verifikation wird ein Modell oder eine Simulation überprüft, ob es grundsätzlich plausibel und einsatzfähig ist und die vorab aufgestellten Anforderungen erfüllt.

Validierung: Durch die Validierung wird überprüft, ob das Modell oder die Simulation die Realität in Bezug auf die zu untersuchenden Eigenschaften hinreichend genau abbildet.

Das **Bild 1** zeigt einen modellierten Antriebsstrang als schematische Darstellung. Mithilfe der Simulation des modellierten Antriebsstrangs und der gezielten Variation der Parameter ist es möglich, diese im Hinblick auf die lokalen CO₂-Emissionen zu optimieren. Eine weitere Reduktion erfolgt über die Betriebsstrategie, die das zentrale System zur Wahl der Leistungsaufteilung zwischen der Verbrennungskraftmaschine und der elektrischen Maschine darstellt. Die Anzahl an Varianten beträgt für eine bespielhafte Untersuchung der Parameter Leistung der Verbrennungskraftmaschine, Leistung der elektrischen Maschine, Kapazität der Hochvoltbatterien und die Betriebsstrategie je nach Schrittweite 81 – 5000 Varianten, die jeweils 25MB an Daten umfassen. Für die Verifikation der Simulation und Analyse der relevanten Informationen aus den großen Datenmengen wird ein methodisches Verfahren entwickelt. Nach diesem Verfahren werden die Daten zuerst gefiltert, anschließend klassifiziert sowie visualisiert und dann bewertet. Gleiches kann für die anschließende Validierung der Simulation angewendet werden.

Bild 2 – Links: Schematische Darstellung des Prüfstandaufbaus eines hybriden Antriebsstrangs. Unten rechts: Prüfstand eines hybriden Antriebsstrangs am Department F&F. Dieser dient der Validierung der Simulation und der Durchführung von Versuchen für die Lehre.

Die grafische Aufbereitung der Daten zur Verifikation und Validierung ist im Entwicklungsprozess von großer Bedeutung, da diese eine verständliche Kommunikationsgrundlage für die verschiedenen Abteilungen bieten muss. Eine beispielhafte Darstellung ist in **Bild 3** dargestellt. Mithilfe dieser Darstellung kann die Betriebsstrategie bereichsweise analysiert und verifiziert werden. Hier wird beispielsweise die High-Phase des Testzyklus WLTP betrachtet. Oben wird die Geschwindigkeit des Fahrzeugs mit der farblich markierten Betriebsfunktion gezeigt und unten ist der Ladezustand der Hochvoltbatterie dargestellt. Betriebsfunktionen sind Zustände in der Betriebsstrategie, die sich in antreibende und bremsende Funktionen aufteilen. Eine antreibende Funktion ist beispielsweise das elektrische Fahren, bei dem das Fahrzeug nur mit der elektrischen Maschine angetrieben wird. Analog dazu verhält sich das verbrennungsmotorische Fahren. Beim hybriden Fahren sind sowohl die elektrische Maschine als auch die Verbrennungskraftmaschine aktiv und treiben das Fahrzeug an. Die bremsenden Funktionen sind die Rekuperation und das mechanische Bremsen. Erstere ist wie das elektrische Fahren, nur wird hier die elektrische Maschine als Generator betrieben und lädt die Hochvoltbatterie auf. Beim mechanischen Bremsen wird das Fahrzeug mit den Scheibenbremsen entschleunigt.

Bild 1 – Schematische Darstellung: Modellierter Antriebsstrang eines Hybridfahrzeugs der Mittelklasse mit P2-Architektur. P2: Die Verbrennungskraftmaschine und elektrische Maschine sind durch eine Kupplung voneinander getrennt.

Das **Bild 2** zeigt den benutzten Prüfstand eines hybriden Antriebsstrangs am Department F&F, mit dem u.a. die berechneten CO₂-Emissionen der Simulation validiert werden. Bei der Entwicklung des Prüfstands steht die Umsetzung der Betriebsstrategie im Vordergrund, die eine zusätzliche Regelung der Antriebsmaschinen voraussetzt. Nach dem entwickelten Verfahren werden auch die Validierungsdaten nach dem obigen Schema ausgewertet. Ein Vorteil bei der Validierung mit dem entwickelten Verfahren liegt darin, dass Fehler in der Simulation zeitlich und thematisch zuverlässig zugeordnet werden können, wie in der letzten Darstellung gezeigt wird.

Bild 3 – Grafische Analyse der Betriebsstrategie des simulierten Antriebsstrangs.

Eine beispielhafte Auswertung der grafischen Verifikation würde wie folgt aussehen. Das beobachtete Verhalten wird mit dem physikalischen Gesetzen verglichen und es wird überprüft, ob die gezeigte Betriebsstrategie realistisch umsetzbar ist. Die Physik besagt, dass der Ladezustand der Batterie sinkt sobald die elektrische Maschine am Antrieb des Fahrzeugs beteiligt ist und steigt sobald rekuperiert oder das Fahrzeug an der Steckdose geladen wird. Mit Hinblick auf die Abbildung wird im untersuchten Bereich die Betriebsstrategie richtig umgesetzt und die Physik korrekt abgebildet. Jedoch wird ein häufiger Wechsel zwischen den Betriebsfunktionen beobachtet, was in Verbindung mit realen und unterschiedlich reaktionsträgen Komponenten untersucht werden muss.

KONTAKT

HAW Hamburg – Department F&F: Simulation & Prüfstandsautomatisierung

M.Sc. Keller, Lukas Lukas.keller@haw-hamburg.de

FAKULTÄT TECHNIK UND INFORMATIK

Department Maschinenbau und Produktion Heinrich-Blasius Institut Für Physikalische Technologien

Design and performance analysis of a tubular PEM electrolysis cell

Armin Laube^{1),2)}, Antonio Chica Lara²⁾, Thorsten Struckmann¹⁾

1) Hamburg University of Applied Sciences (HAW), Heinrich Blasius Institute for Physical Technologies, Hamburg, Germany 2) Instituto de Tecnologia Química, UPV-CSIC, València, Spain

Tubular PEM electrolysis cell design

The growing share of volatile energy resources in the electric grid create a need for energy storage systems. A promising candidate to store energy is hydrogen that can be produced in polymer electrolyte membrane (PEM) electrolyzers with electric energy. Currently, PEM electrolysis cells are based on a planar design as shown in Figure 1. A tubular cell design, as shown in Figure 2, enables a fabrication with co-extrusion, reduces sealing length and promises higher power densities [3] This design will be developed and investigated within the research project Tubulyze at the HAW Hamburg in cooperation with several project partners.

Fig 1: Schematic of a planar proton exchange membrane electrolyzer cell [4]

Cell design and fabrication

Tubular test cell

The PEM electrolysis cell has two half cells (anode and cathode) that are separated by the polymer electrolyte membrane. The components in each half cell have several functions as for example the conduction of current, transport of water and gas and acceleration of the reaction by catalysts. Multiphysics and numeric models are used to support the design of tubular porous transport electrodes with catalyst coating by atomic layer deposition[1,2].

The tubular cells are operated in a test rig where the cell potential, half cell potentials, electric current, temperatures and pressures are monitored to analyze the cell performance and efficiencies.

Fig 3: Simulation of potential gradients inside the anode electrode for a homogeneous current density in COMSOL.

To investigate the performance of the tubular cells, demonstrators with different cell designs and catalyst loadings are fabricated.

Cathode Electrode:

graphite felt (research sample), SGL Carbon 0.28mp/cm² Pt coating (ALD)

Tubular Membrane: VM-fumasep[®] FFT Diameter: 5.0 mm // active length: 100 mm

Anode Electrode 0,12mg/cm² ir coating (ALD)

Cell performance:

- Current density: $i = 1.7V = 55 \text{mA/cm}^2$
- Ohmic resistance: $ASR_{EIS} = 0.76 \text{ Ohm}^2$ $ASR_{CI} = 1.20 \text{hm}^2$

Fig 5: Tubular PEM electrolysis cell

Fig 4: Fabrication of a tubular PEM electrolysis cell

• Mass activity i @ 1.7V = 460 A/g

Fig 6: Polarization curve o the tubular PEM electrolysis cell

Acknowledgements

This work is done within the research project Tubulyze and is funded by the Federal ministry of Education and Research (BMBF FKZ:03FS0564B).

https://tubulyze.de/

SPONSORED BY THE

CONTACT

e-mail: armin.laube@haw-hamburg.de

phone: +49 40 42872 8719

AG-Homepage

[1] A. Laube et al., PEM water electrolysis cells with catalyst coating by atomic layer deposition, International Journal of Haydrogen Energy 46 (79) (2021) 38972-38982, DOI:10.1016/j.ijhydene.2021.09.153

[2]A. Hofer et al., Properties, performance and stability of iridiumcoated water oxidation electrodes based on anodized titanium felts, Sustainable Energy and Fuels 5 (2021) (478-485), DOI: 10.1039/d0se01577f

[3] A. Laube et al., Tubular membrane electrode assembly for PEM electrolysis, in preparation

[4]]. Mo et al., Investigation of TitaniumFelt Transport Parameters for Energy Storage and Hydrogen/Oxygen Production, 13th International Energy Conversion Engineering Conference, DOI: 10.2514/6.2015-3914

[5]https://tubulyze.de/

REFERENCES

FAKULTÄT TECHNIK UND INFORMATIK Department Maschinenbau und Produktion

The industrial design of an autonomous vehicle

DEVELOPMENT AND CONSTRUCTION OF AN ENCLOSURE FOR THE ROBOTICS PROJECT 'SHARED GUIDE DOG 4.0'.

Industrial design is the creative act of determining the physical shape and style of a product or device. Just like any other man-made object, robots, as well as vehicles, need industrial design. This sub-project of the 'Shared Guide Dog 4.0' (SGD4.0) was in charge of developing a bodywork that, based on the existing chassis, was both functional and aesthetic.

A digital drawing of the bodywork, which was used as a reference for the CAD model.

ANALYSIS PHASE

Above, a sketch of the bodywork design. Below, an image of the CAD model.

The first step is to determine the purpose and use of the product as well as to set the requirements from an engineering perspective. These requirements could include parameters such as weight, durability, or dimensional restrictions. Also, deciding upon specific features, in this case, if the bodywork should be able to withstand collisions or weight placed on it or even if it should be waterproof, or just weatherproof. Finally, the placement of sensors, lights, or any other specific requirements should be decided beforehand. Once the goals are clear, one can start taking inspiration for a design that fulfills

DESIGN CONCEPT

such requirements.

The brainstorming of ideas occurs in this phase, where the most general design challenges are

according to parameters such as a stress-strain analysis, manufacturing techniques, and safety factors.

Since the chassis has a complex design that can hardly be manually measured; in order to get precise dimensions of the bodywork, the chassis was 3D-scanned by using photogrammetry. Once a precise 3D model of the chassis was available, the bodywork was designed in CAD by using 3D splines, free forms, and surface modeling.

It is important to note that during this phase, all the requirements discussed in the analysis phase are implemented; for instance, the dimensions, durability, weight, etc. It is also important to consider the assembly, as it should be relatively easy to mount or even unmount, according to the requirements set in the analysis phase. The location of sensors and lights require holders that should also be incorporated in this phase to allow an easy installation. Furthermore, details such as the size of the screws, needed in different parts on the mounts, should be here defined.

Finally, another relevant consideration is the manufacturing technique chosen, so the product can be designed accordingly. There are important differences in the creation of a design depending on whether it will be manufactured by injection

to be printed in multiple parts and to be assembled afterward. In order to obtain a smooth surface, the bodywork was subjected to multiple post-processing steps that include filling, sanding, and painting. The resulting product is finally assembled on the robot.

Picture of the physical version as presented at the ITS World Congress 2021.

TEST, OPTIMIZE, REITERATE

approached. During this phase, multiple sketches are drawn before deciding for the most suitable design. Subsequently, a more appealing digital drawing of the selected sketch is made and colored before making a final decision. The design concept is more art-oriented, where the main focus is on the style and appearance of the bodywork, leaving engineering decisions to the next phase.

DESIGN DEVELOPMENT

This is the part where art meets engineering. Here, the design concept is taken to the CAD design where decisions about dimensions, thickness, structure, etcetera have to be made molding, 3D printing, additive manufacturing, etcetera.

MANUFACTURING PHASE

In this phase, the product goes from intangible to tangible by fabricating the design created in the previous steps. As only one bodywork is initially needed, the design has not been considered for mass production yet. Therefore, this first prototype can be manufactured by using rapid prototyping technologies, in this case, 3D printing.

As 3D printers are not typically large enough to print the bodywork in one piece, it was designed

As a final step in most engineering design processes, it is important to identify the elements that can be improved. Such elements are usually detected during the testing of the prototype. This process can be repeated until having achieved the desired result. As the SGD4.0 itself is being developed, a final version has not been reached and therefore, the list of changes for a new version of the bodywork is not yet complete. Thus, this optimization process has been momentarily postponed; however, a separate work is focusing on potential manufacturing techniques that could make it possible to massproduce this bodywork.

HAW-HAMBURG.DE

KONTAKT

Forschungsschwerpunkt Industrielle Robotik

M.Sc. Miguel Adad Martinez Genis miguel.martinezgenis@haw-hamburg.de

FAKULTÄT TECHNIK UND INFORMATIK

Department Maschinenbau und Produktion

Entwicklung von Vorhersagealgorithmen für Ausfälle in komplexen leistungselektronischen Systemen in der Photovoltaik

SMA

Gefördert durch:

Bundesministerium für Wirtschaft und Klimaschutz

aufgrund eines Beschlusses des Deutschen Bundestages

ENTWICKLUNG EINES RESERVOIR COMPUTING ANSATZES ZUR ZEITREIHENPROGNOSE IN PHOTOVOLTAIKSYSTEMEN

Im Rahmen des Forschungsprojektes Digital Twin Solar @HAW werden digitale Zwillinge für die Abbildung von Photovoltaik-Komponenten und deren Kopplungen entwickelt. Kern des Teilvorhabens, welches hier vorgestellt wird, ist die Untersuchung ob und wie moderne Datenanalyseverfahren, speziell Reservoir Computing, das Erkennen, Vorhersagen und insbesondere das Modellieren von Photovoltaik-Komponenten ermöglichen.

Abbildung 3: Schematische Darstellung eines Reservoir Computing Systems [3]

Motivation

Einer der wichtigsten Faktoren für den Betrieb einer Photovoltaikanlage ist die Wirtschaftlichkeit. Unser Ziel ist die Entwicklung von Vorhersagealgorithmen, die es ermöglichen durch prädiktive Wartungskonzepte Betriebs- und Wartungskosten zu reduzieren und die Wirtschaftlichkeit zu fördern. Untersuchungen zeigen, dass die meisten Ausfälle von Photovoltaikanlagen durch Ausfälle von Invertern verursacht werden. Insbesondere kritische Bauelemente wie Kondensatoren und Halbleiterschalter wie IGBTs und MOSFETs werden hierfür als Ursachen aufgeführt. [2] Da die Komponenten einer Photovoltaikanlage nicht nur in ihrer Einzelwirkung untersucht werden dürfen, sondern auch Wechselwirkungen zwischen verschiedenen Komponenten berücksichtigt werden müssen, ist eine möglichst umfassende datentechnische Erfassung notwendig.

Reservoir Computing

Reservoir Computing ist ein Algorithmus des maschinellen Lernens, der sich besonders gut für die Prognose von dynamischen Systemen eignet. Es gibt vielversprechende Ergebnisse bei der Zeitreihenprognose von chaotischen Systemen sowie realen Größen. [4, 5]

Ausblick

Im weiteren Verlauf der Forschung wird der Reservoir Computing Ansatz auf den dimensionsreduzierten Datensatz der Photovoltaik Inverter angewendet. Die prognostizierten Zeitreihen sollen mit Fehlervorhersagealgorithmen

Abbildung 1: SMA Solar Technology SUNNY CENTRAL [1]

Dimensionsreduktion

Aufgrund der hohen Anzahl von etwa 200 Parametern für jeden Inverter, wird eine Hauptkomponentenanalyse für alle numerischen Parameter, mit dem Ziel der Dimensionsreduktion bei minimiertem Informationsverlust durchgeführt. Abbildung 2 zeigt die Ergebnisse für einen Inverter. Es lässt sich ablesen, dass sich bereits mit einer Anzahl von 20 Hauptkomponenten nahezu 100% der Varianz erklären lassen. Zusätzlich liefert eine Rücktransformation der Hauptkomponentenanalyse die für die Gesamtvarianz des Datensatzes wichtigsten Variablen. Folgende Analysen können somit auf den transformierten sowie den ursprünglichen Datensatz angewendet werden.

Abbildung 4: Zeitreihenprognose mit Reservoir Computing [5]

Abbildung 3 zeigt die schematische Darstellung eines Reservoir Computing Systems. Die Kernidee besteht darin, dass die Eingangszeitreihe an ein hochdimensionales, dynamisches System, dem sogenannten Reservoir, gekoppelt wird. Das Reservoir besteht aus einem rekurrenten neuronalen Netz, das nach dem Zufallsprinzip konstruiert wird und dessen Gewichte unverändert bleiben. Durch diesen Aufbau ist es in der Lage, Informationen zu speichern und komplexe Aufgaben zu bewältigen. Ein weiterer Vorteil dieser Methode ist, dass lediglich das Output Layer so trainiert wird, dass die Differenz zwischen der Eingangszeitreihe und der prognostizierten Zeitreihe minimiert wird. Der Trainingsaufwand lässt sich dadurch meist auf eine lineare Regression reduzieren.

Erweiterung Rechnerinfrastruktur

Für die Verarbeitung der von SMA Solar Technology bereitgestellten realen Messdaten wurde im Rahmen des Forschungsprojektes eine Rechenclustererweiterung beschafft und installiert. Insgesamt stehen damit 672 Prozessorkerne sowie ein Arbeitsspeicher von 3,6 TB zur Verfügung. Die Erweiterung erlaubt es, die Analysen auf den gesamten Datensatz auszuweiten. Inverter-Daten mitDimensionsreduktionReservoir Computing200 Parameternauf 20 ParameterZeitreihenprognose

Abbildung 5: Forschungsausblick

verbunden werden, um potentielle Ausfälle frühzeitig zu erkennen. Darüber hinaus werden weitere Methoden zur Zeitreihenprognose, wie beispielsweise long short-term memory (LSTM) Netzwerke untersucht, und mit dem Reservoir Computing Ansatz verglichen.

Quellen

[1] SMA Solar Technology: SUNNY CENTRAL https://www.sma.de/produkte/solarwechselrichter/sunny-central-2200-2475-2500-ev-2750-<u>ev-3000-ev.html – Eingesehen am 06.06.2021</u> [2] The Effect of Inverter Failures on the Return on Investment of Solar Photovoltaic Systems. T. J. Formica, H. A. Khan, und M. G. Pecht (2017) [3] Forecasting chaotic systems with very low connectivity reservoir computers. Griffith, Aaron, Andrew Pomerance, und Daniel J. Gauthier (2019) [4] Model-Free Prediction of Large Spatiotemporally Chaotic Systems from Data: A Reservoir Computing Approach. Pathak, Jaideep, et al. (2018) [5] Using reservoir computing for forecasting time series: Brazilian case study. Ferreira, Aida A., and Teresa B. Ludermir (2008)

Abbildung 2: Hauptkomponentenanalyse

ROOM FOR RESEARCH

HAW-HAMBURG.DE

KONTAKT

Forschungsschwerpunkte: Datenanalyse und

Maschinelles Lernen

Löffler, Dominik

Dominik.loeffler2@haw-hamburg.de

MOTIVATION

Our goal is to detect anomalies in data records of solar inverters in order to predict failures of these devices. This will enable the implementation of various predictive maintenance strategies to reduce the operation and maintenance cost.

WORKING HYPOTHESIS

Power electronic devices such as solar inverters are complex constructions containing a high number of different components, we propose that such a system can be viewed as a dynamical system and a failure of such a device as a critical transition. Based on the theory of bifurcations in dynamical systems such events could be predicted analysing so called early warning signals. In this contribution we study if and how this scheme is applicable to power electronics.

MATERIALS & METHODS

Some dynamical systems have more than one stable equilibrium. When the conditions of a system change, those equilibriums can become unstable and force the system to transition to a different state.

A bifurcation is an event that happens when external influence causes the systems behaviour to change. This phenomenon has been studied for a variety of systems and is illustrated here base on content from [1,3]. Compare figure **a** to figure **d** where the gradient around the ball flattens out. This in turn can cause the "Basin of attraction" to shrink. This means when a system is far away from a bifurcation as in figure **a**, random perturbations on the system lead to a rapid return to equilibrium. This can be observed in a low variance of the state variable see figure **b**. As well as in the low correlation of the amplitude of fluctuation (figure c). Once a bifurcation is immanent the system becomes unstable. Perturbations are not decaying as fast as before. Which means that they have a bigger influence on the system. This can be observed by an increase in the variance of the state variable (figure **e**) and an increase of the correlation the amplitude of fluctuation seen in figure **f**. [1,3]

PROJECT VORAUS-PV

ANOMALY DETECTION IN POWER ELECTRONICS USING CRITICAL TRANSITIONS THEORY GABRIEL MENDOZA REYES, SARAH HALLERBERG HAMBURG UNIVERSITY OF APPLIED SCIENCES, SMA

EARLY WARNING SIGNALS

In a variety of systems (see [1,3]) critical transitions were announced by early warning signals visible in time-series of measurements from the systems. Common methods to detect these early warning signals are an increase in sliding window-variance and auto-correlation before the onset of the transitions. Studying mathematical models for critical transitions [4] revealed that the ability to detect CTs can depend on the choice of feature estimated from the time series.

Figure 2: taken from [1]

Figure 1: taken from [1]

BUILDING THE INFRASTRUCTURE SLIDING WINDOW VARIANCE

The underlying dataset of inverter sensors is in the Terabyte range. Therefore distributed computing is a must. Through the funding of this BMBF project (FKZ: 03EI6024F) we where able to extend the existing cluster. This extension includes 14 HPC - Servernodes with a total of 672 CPU Cores and a combined RAM of 3.6 TB. Data is stored using HDFS. Calculation run Apache Spark.

FINDING POSSIBLE EWS

To find suitable candidates for an Early Warning Signal. We performed a Principal Component Analysis (PCA) of all numerical data in our dataset. After performing a reverse operation we calculated the significance of each sensor signal of the entire dataset. The figure shows the composition of the four most important features for every inverter and their respective count inside the entire dataset. These calculation are the base for calculating the various early warning signals discussed earlier.

REFERENCES

[1] Early-Warning Signals for Critical Transitions, Scheffer et al. (2009) [2] Critical slowing down as a biomarker for seizure susceptibility, Maturana et al. (2020) [3] Slowing down as an early warning signal for abrupt climate change, Dakos et al. (2008) [4] Predictability of critical transitions, X. Zhang, C. Kühn, S. Hallerberg (2015)

This figure shows the window variance of the relative Humidity in the DC compartment of a inverter. Approaching a failure we can detect a small increase of variance.

OUTLOOK

We aim on identifying onsets of critical transitions in a high-dimensional dataset of terra-byte size. Having completed studies for dimensionality reduction, we now focus on identifying variables that reveal the onset of critical transitions in the most prominent ways. Additionally we combine these approaches with time-series modelling through ANNs and detection of anomalies through model deviations. Furthermore we are going to combine the developed classification algorithm with a prediction model to get a working predictive maintenance tool which will enable SMA to detect failure of inverters in the future.

FAKULTÄT TECHNIK UND INFORMATIK DEPARTMENT FAHRZEUGTECHNIK UND FLUGZEUGBAU

Fast design of repairs to carbon fiber reinforced plastic components in civil aviation (FastRepair)

Phd Student: Lalitkumar Savaliya; Supervisors: Markus Linke and Juan Antonio García-Manrique

Doctoral Program: Programa de Doctorado en Diseño, Fabricación y Gestión de Proyectos Industriales

Carbon fiber reinforced plastic (CFRP) bonded repairs are problematic from a certification point of view. With bonded repairs, it must be proven that the interface between the joining partners does not fail or adhesive layer damage (adhesive layer detachment, cracks and weakening) does

not lead to the repaired structure falling below the limit load. The FastRepair project, therefore, aims to design a process in which typical repairs to load-bearing CFRP structures can be validly designed in an automated and rapid manner.

INITIAL SITUATION

In aviation, the safety requirements for repairs of structural components are very high. Typical repairs are based on riveting or bolt connections.

Bonded repairs are potential technology to replace the bolted repairs in the case of CFRP.

Figure 1 shows a typical bonded patch repair procedure.

However, bonded repairs are problematic from a certification point of view.

For certification of CFRP bonded repairs, it must be demonstrated that initial damage to the bond can only grow to the point where the ultimate loadcarrying capacity of the repair is still assured.

Additionally, currently available numerical analysis methods for bonded joints are more complex and computationally expensive.

OBJECTIVE

The project aims to demonstrate that the analytical-numerical method can be used to quickly establish validated models that can reliably predict the bond behavior (e.g., crack growth) in CFRP bonded repairs. The development of a rapid design methodology is based on the numeric-theoretical procedure.

The verification procedure is based on the consideration of the typical failure behavior of CFRP components as well as suitable repair concepts.

Finally, the obtained results will be evaluated for their transferability and scalability to other materials, processes and Industries (e.g., wind or shipping).

METHODOLOGY

In the case of CFRP patch repair, the boundary layer between the joining partners is interpreted or idealized as an adhesive layer.

A special-purpose interface element is being developed to predict the bonded joint behavior (e.g., shear stress and peel stress at a bondline) faster and efficiently for an adhesive joint.

Figure 2 illustrates the graphical representation of an interface (adhesive) element at bonded joints or interfaces.

FIRST RESULTS

Using the Interface element, a single lap shear joint as shown in figure 3 was analyzed and shear stress results at bondline were evaluated.

Below figure 3 presents the shear stress results over the bondline for a single lap shear joint.

It can be seen that using the least number of elements, the reliable prediction of shear stress at the adhesive layer or bondline can be achieved.

Figure 3: Shear stress along the bondline of a single lap shear joint

FUTURE DIRECTION

Automization and optimization of the developed models and processes are to be carried out.

If this information is known, it is also possible to estimate after what period of use an inspection of the repairs must take place or when inspection intervals must be set.

SOLUTION Approach

A simulation and repair process needs to be demonstrated that fulfils the approval-related framework conditions for CFRP repairs. Figure 2: schematic diagram of single lap shear joint with an interface element

This element is 2-dimensional with two face sheets where the adhesive layer or core is connected to the face sheets or face surface.

The formulation is on the plane stress condition.

The applicability of the developed models and processes for adhesive-like joined repair patches will be demonstrated using realistic CFRP components.

ACKNOWLEDGMENT

The Project FastRepair is funded by Joachim Herz Stiftung. Its support is very much appreciated by the authors.

HAW-HAMBURG.DE

KONTAKT

Lalitkumar Savaliya

lalitkumar.savaliya@haw-hamburg.de

FAKULTÄT TECHNIK UND INFORMATIK Department Fahrzeugtechnik und Flugzeugbau

Electro-mechanically coupled multiscale models for multifunctional composite materials

CHARACTERIZATION OF FORCED HEAT CONVECTION UNDER AIRCRAFT ICING CONDITIONS

The characteristics of heat convection, which is the thermal heat transfer from a solid to its environment, depend on the environmental conditions. A reliable simulation of de-icing processes for multifunctional materials depends on the convection model. It should be related to application based environmental conditions. In the latest study, the convection of a multifunctional composite panel is characterized by an in-situ test in an aviation de-icing test-bed.

D Polymer electrolyte coating.

Figure 1: Schematic of multiscale model for thermal heat transfer within the multifunctional composite material [3]

Figure 2: Carbon fibre rovings for active heating embedded in glass fibre laminate, red: control surface area, captured by themographic camera (shot at HAW Hamburg)

[1] Schutzeichel, M.O.H. et al.: Experimental characterization of multifunctional polymer electrolyte coated carbon fibres; Functional Composites and Structures, Vol. 1, Nr. 025001 (2019)

[2] Schutzeichel, M.O.H.; Kletschkowski, T. and Monner, H.P.: Effective stiffness and thermal expansion of three-phase multifunctional polymer electrolyte coated carbon fibre composite materials; Functional Composites and Structures, Vol. 3, Nr. 015009 (2021)

In many engineering applications materials are designed to provide one function, e.g. structural load transfer. Especially in lightweight design, this is commonly optimised towards low component weight. Multifunctional materials instead are able to provide multiple functions e.g. structural load transfer and directed thermal heating (in this case). With this general recognition, multifunctional materials can realise system-level functions, such as de-icing of aircraft wings, while reducing the amount of monofunctional materials and the installation and design effort. The enhanced weight saving potential on a system level is valuable for mobility platforms aiming at an overall reduction of energy need. Nevertheless, this requires also knowledge about the multiphysically coupled behaviour of the material under mechanical and electro-thermal loads.

Computational efficient by microscale homogenization

The multifunctional material under consideration is a three-phase carbon fibre reinforced plastic (CFRP), where the carbon fibres are covered by a polymer-electrolyte coating (see figure 1). Originally developed for structural batteries, this material joins structural stiffness and directed electrical current conduction [1]. "Directed" means that the coating functions as electrical insulator and that the carbon fibre can be applied as insulated current conductor. This micro-scale architecture enables current conduction and, simultaneously by joule effect, a directed thermal heating. The thermal heating results in electro-thermomechanically coupled behaviour, which is characterized in this study-series [1-3].

of aerodynamic surfaces of aircraft. Typically wing leading edges are subject to icing conditions during flight and need to be de-iced to assure the aerdynamic function of the wing. Classical systems operate with hot air taken from the engine (bleed air), which reduces the engines' efficiency. The hot air is then directed by a complex pipe system towards the critical wing surfaces. This system only operates during less than 10 % of a regular commercial flight, but is a permanent part of the aircraft. This additional mass causes an increase of fuel-consumption and thus an increase of emissions.

Proof of concept by convection characterization

The potential for multifunctional materials in deicing systems is expected to be great, but the evaluation of heat convection under application related icing conditions (temperature, moisture and airflow) is critical for the evaluation. The present experimental study solves this issue. In thermal simulation heat convection is usually represented by Robbins' boundary condition:

 $\dot{q} = h \cdot A \cdot (T - T_{ext})$

The heat dissipation per time unit \dot{q} at a free surface is assumed to be proportional to the temperature difference of environment T_{ext} and local temperature *T*, to the convective surface area A and to the convection coefficient h. The convection coefficient is very sensitive to the setup (material, environment, geometry). In addition, the heat dissipation at the surface of a multifunctional material directly influences the resulting temperature field inside the solid, thus influencing the mechanical behaviour. Accordingly, the knowledge about the heat convection coefficient is essential to conclude about the in-situ behaviour of multifunctional materials, especially under forced convection condition, which is the case for de-icing of aircraft surfaces.

compatible to wing sections or derviatives of wing structures.

For this study a glasfibre laminate was used as structural support and the top layer was made from glas fibre fabric and carbon fibre rovings (see figure 2). The plate is designed to suite to the test chamber of the de-icing test-bed. Furthermore, the setup comprises a thermographic camera to capture the control-surface temperature and a electrotechnical amplifier circuit to control and adapt the heating power (see figure 3). The electrotechnical solution was developed by Thorben Strübing (B.Sc. Mechatronics), Student in MA Automation Technology at HAW Hamburg [4].

Figure 3: Experimental test setup in de-icing testbed at TU-Braunschweig: 1) Specimen plate coated with high emissivity black paint, 2) Thermographic

[3] Schutzeichel, M.O.H.; Kletschkowski, T. and Monner, H.P.: Microscale Thermal Modelling of Multifunctional Composite Materials Made from Polymer Electrolyte Coated Carbon Fibres Including Homogenization and Model Reduction Strategies; Applied Mechanics, Vol. 2, 739-765 (2021)

[4] Strübing, T.: Systementwurf und -integration einer ortsdiskreten thermographischen Temperaturmessung in ein adaptives Heizsystem für multifunktionale Leichtbaupaneele, Masters' Thesis under preparation, HAW Hamburg 2022

me Scan HAW-HAMBURG.DE

Numerical modelling enabled the development of mechanical and thermal homogenization of the composite material on the micro-scale. Homogenization is needed to find effective material properties which are applied to macroscale models. With this method, computational cost is reduced by 95%. Furthermore, experimental evaluation revealed that the material mechanics is directly dependant on the local temperature, leading to efforts for a reliable model of the spatial temperature field [1-3].

One perspective for the application of a multifunctional composite material is the de-icing

In a collaboration with the Institute of Adaptronics and Function Integration at TU Braunschweig and the DLR Institute of Composite Structures and Adaptive Systems, it was possible to conduct convection characterization in a de-cing test-bed. This is designed to apply environmental conditions comparable to in-flight icing conditions with low temperature down to -20°C, airflow of up to 35 m/s and water drops injection. The test-bed is

KONTAKT

Forschungs- und Transferzentrum

Future Air Mobiliy

camera, adjusted to capture surface temperature within the control surface area (both from HAW Hamburg) [4]

The study continues now by the help of a virtual twin of the laminate, where the convection is modelled by Robbins' boundary condition. A direct comparison with measured results from the experimental setup enables the identification of specific convection coefficients, which can be applied to future benchmarking simulations for deicing systems. In addition, the optimization of the geometric architecture of a multifunctional structure will depend on realistic boundary conditions.

The present work is part of a doctoral study by Maximilian Schutzeichel (M.Sc.), supervised by Prof. Dr.-Ing. habil. Thomas Kletschkowski (HAWHH) and Prof. Dr.-Ing. Hans Peter Monner (DLR).

Maximilian Schutzeichel, M.Sc., C212 b maximilian.schutzeichel@haw-hamburg.de

PROJECT DADLN DYNAMICS AND ADAPTIVE DECOMPOSITION OF LEARNING NETWORKS {NAHAL SHARAFI, CHRISTOPH MARTIN, OUYANG WU, IVO NOWAK, SARAH HALLERBERG }

MOTIVATION

We examine the learning process in Artificial Neural Networks from a dynamical systems perspective. We probe the changes in the weights of the networks and look for the directions of stability in the dynamical system that consists of all the weights in the network. We aim to determine how the learning process of a high-dimensional dynamical system changes if the system is perturbed along its stable and unstable directions during the

MATERIALS & METHODS

To examine the directions of stability in a dynamical system we use the concept of covariant Lyapunov vectors (CLVs). Covariant Lyapunov vectors characterize the directions along which perturbations in dynamical systems grow.

We propose a purely data-driven method for estimating the CLVs. To this end we employ sparse identification of nonlinear dynamics (SINDy), to estimate the Jacobian matrices of dynamical systems from data. We then use the obtained jacobians to compute the CLVs with two different methods. One of the methods (Ginelli) involves iterating the system back from the far future, the other is based on information from the immediate future and we refer to it as the near future method (NFM).

learning process. Through this we will gain a better insight into the process of learning.

COMPUTING CLVS

To verify the effectiveness of our approach we compared the CLVs derived from data to CLVs derived using model equations in several different dynamical systems. Here we present the results of a Lorenz attractor and a lorenz-96 model of dimension 128. We added a stochastic term to the variables of the Lorenz attractor to test the robustness of our approach against noise.

Motivated by column generation for solving huge optimization problems, new decompositionbased successive approximation methods for machine learning (ML) are developed in this project. These so-called generate-and-solve methods solve complex ML problems by generating an ensemble model (master problem) defined by a convex combination of base learners, which is improved by solving easier DNN sub-learning-problems. Since it is easier to understand sub-learning-problems than a given complex learning problem, this approach helps to understand and explain deep learning systems. Moreover, it is possible to solve sub-problems in parallel using deterministic global optimization methods. This increases

PRELIMINARY RESULTS ON ARTIFICIAL NEURAL NETWORKS

nents.

The authors of this study are grateful to the BMBF for financial support within the project DADLN (01 | S19079) and to the Landesforschungsförderung Hamburg for financial support within the project LD-SODA (LFF-FV90).

Thanks to BMBF we now have extended our cluster. The new computing cluster has a total of: -672 Cores / 1344 Threads (14x2x24/48) - 3584 GB of RAM (14x16x16) The GPU Node has a total of 5 RTX A6000 GPU units, with a combined memory of 240GB.

ADAPTIVE DECOMPOSITION

the efficiency of the approach. We use standard ML benchmark problems and complex reinforcement learning and design optimization problems for testing the new methods.

Henceforward we are equipped with the right tool to potentially estimate CLVs for different dynamical systems. We are currently applying this method to the weights of artificial neural networks and computing the CLVs of the weights as they change during learning. Here we present the trajectory and the CLVs of a small artificial neural network with 37 weight compo-

Our next step is to better understand the role of the directions of stability in the process of learning. We will probe the effect of perturbing the system along the directions of the CLVs and investigate its effect on the the efficiency of the learning process.

ACKNOWLEDGMENT

REFERENCES

- [1] Ch. Martin, N. Sharafi, and S. Hallerberg. arXiv *preprint arXiv:2107.08925, 2021.*
- [2] P. Muts, S. Bruche, I. Nowak, O. Wu, E. Hendrix, and G. Tsatsaronis. *Optimization and Engineering*, 2021.
- [3] N. Sharafi, M. Timme, and S. Hallerberg. *Physical Review E*, 2017.
- [4] F. Ginelli, P. Poggi, A. Turchi, H. Chaté, R. Livi, and A. Politi. *Physical review letters*, 2007.
- [5] S. Brunton, J. Proctor, and N. Kutz. *Proceedings of* the national academy of sciences, 2016.

FAKULTÄT TECHNIK UND INFORMATIK Department Maschinenbau und Produktion

Modularisierung von Produktionsanlagen zur Steigerung der Flexibilität und Fertigung kundenindividueller Produkte

ANWENDUNG VON PLUG & PRODUCE – KONZEPTEN ZUR FLEXIBLEN GESTALTUNG EINER PRODUKTION

Aktuelle Produktionsanlagen sind dafür ausgelegt bei hohen Produktionsvolumen kosteneffizient und wirtschaftlich zu arbeiten. Dies steht im Gegensatz zu der Entwicklung hin zu einer immer

höheren Variantenvielfalt und kundenindividuellen Produkten. Um den neuen Anforderungen an die Produktion gerecht werden zu können, ist eine Umgestaltung der Produktionsanlagen erforderlich. Diese Umgestaltung kann durch das Definieren einzelner Produktionsmodule und das flexible Kombinieren von Modulen erreicht werden.

Verschiedene Komponenten können dank Modularität und Standardisierung kombiniert werden Bild: Festo

Durch das Kombinieren verschiedener Module wird z.B. Pick-and-Place ermöglicht Bild: Yaskawa

Über die letzten Jahrzehnte hinweg wurde die in vielen Industriezweigen Produktion großen dahingehend optimiert bei Produktionsvolumen wirtschaftlich zu arbeiten. Dabei ist die Produktion in Hochlohnländern, wie beispielsweise Deutschland, von einem sehr hohen Automatisierungsgrad geprägt, um bei hoher Stückzahl geringe Stückkosten realisieren zu können und gegenüber Niedriglohnländern konkurrenzfähig zu sein. Derzeit findet jedoch eine Entwicklung zu immer individuelleren Produkten, steigender Variantenvielfalt, kürzeren Innovationsund Produktlebenszyklen und stark schwankender Nachfrage statt. Um die Herausforderungen, die aus den geänderten Produktionsbedingungen entstehen, bewältigen zu können, ist eine Evolution der Produktion erforderlich. Derzeitige in Produktionsanlagen sind nicht für eine hohe Variantenvielfalt oder kundenindividuelle Produkte und den damit verbundenen geringen Losgrößen und häufigen Umrüstvorgängen ausgelegt.

Herausforderungen für eine flexible Produktion

Hoch automatisierte Produktionsprozesse sind in ihrer Anpassbarkeit häufig dadurch limitiert, dass die Rekonfiguration und Programmierung der Systeme bei einer Produktveränderung mit hohen Kosten verbunden ist. Um diese Beschränkung automatisierter Produktionssystem zu überwinden und die Agilität zu erhöhen, wird das Konzept von Flexibilität und Veränderlichkeit mehr und mehr relevant. Flexibilität beschreibt die Fähigkeit eines Produktionssystems sich an neue Produktionsanforderungen anzupassen ohne, dass Produktionsressourcen ausgetauscht werden müssen. Veränderlichkeit hingegen beschreibt, wie einfach Produktionsressourcen eines Systems ausgetauscht werden können, um neue Anforderungen des Produktionsprozesses zu erfüllen, welche bei Auslegung des Systems nicht berücksichtigt worden sind.

ressourcen, welche effizient kombiniert und wiederverwendet werden können, könnte eine Lösung für die genannten Herausforderungen zur Anpassung hoch automatisierter Produktionsanlagen darstellen. In diesem Zusammenhang wird der Begriff Plug & Produce häufig genannt. Dies ist angelehnt an die Plug & Play Technologie aus der Computertechnik (beispielsweise bei der USB-Schnittstelle). Das Ziel von Plug & Produce ist das einfache Einbinden von Produktionsressourcen in ein Produktionssystem oder das Erstellen eines komplett neuen dass manuelle Produktionssystems ohne, Konfigurationen oder Programmierungen erforderlich sind. Die Modularität muss sich aber neben der Hardware auch in der Software der Produktionsressourcen widerspiegeln. Es ist erforderlich, dass die Gesamtsoftware aus einzelnen Softwaremodulen zusammengesetzt werden kann, welche zu den physischen Modulen passen. Es ist weiterhin erforderlich, dass die Module mit ihren Fähigkeiten herstellerneutral beschrieben werden und sich die Beschreibung an Standards orientiert. Hierzu gibt es Capability und Skill – Modelle. Capabilities und Skills können zum Teil synonym verwendet werde, Skills haben jedoch einen stärken Fokus auf ausführbare Maschinenfunktionalitäten. Wenn alle verfügbaren Fähigkeiten bekannt sind, können diese den Anforderungen eines Produktionsprozesses eines bestimmten Produktes gegenübergestellt werden

erreicht werden, welcher an jedem Modul installiert wird und so eine einheitliche Schnittstelle darstellt. Weiterhin muss ein einheitlicher Standard für die Definition von Capabilities und Skills gebildet werden. In diesem muss definiert werden, wie das "Wissen" der Capabilities und Skills in Form von Ontologien dargestellt und verknüpft werden kann. Die Ontologie muss darüber hinaus über eine Taxonomie verfügen, welche die Capabilities und Skills einheitlich klassifizieren kann. Darüber hinaus ist ein Standard zu bilden, wie die Kommunikation der einzelnen Module stattfinden kann und wie die Module innerhalb eines Netzwerkes identifiziert werden können. Für die Kommunikation ist die Verwendung bereits bestehender Frameworks und Protokolle möglich,

Beispiel einer Taxonomie zur Einteilung von Produktionsprozessen Bild: Eeva Järvenpää

Modularität als mögliche Antwort für eine agile Produktion

Das Konzept modularisierter Produktions-

(engl. Matchmaking). Durch das Matchmaking von benötigten und zur Verfügung stehenden Fähigkeiten, kann ein Produktionssystem angepasst oder komplett neu erstellt werden.

Anforderungen für die Umsetzung von Plug & Produce

Um das Konzept von Plug & Produce anwenden zu können, müssen diverse Anforderungen erfüllt sein. Zum einen gibt es technische Aspekte, die bei der Umsetzung berücksichtigt werden müssen, wie ein herstellerneutrales Interface, welche die Fähigkeiten der jeweiligen Module einkapselt und standardisiert zu Verfügung stellt. Dies kann beispielsweise durch einen "Device Adapter" wie beispielsweise TCP/IP und OPC UA. Ebenfalls ist zu definieren, wie die einzelnen Module automatisiert parametrisiert werden können, um die gewünschte Funktionalität im Gesamtsystem bereitstellen zu können, ohne dass hierfür manuell Anpassungen vorgenommen werden müssen. Durch die Anwendung von Plug & Produce in der Produktion kann somit sehr flexibel auf die Variantenvielfalt und kundenindividuelle Produkte eingegangen werden, ohne dass hierdurch hohe Aufwände für die Rekonfiguration des Produktionssystems entstehen.

HAW-HAMBURG.DE

KONTAKT

Forschungsschwerpunkt: Modularität und Konnektivität in der Produktion MSc. Simon Eggers simeg@outlook.de

Prof. Dr.-Ing. Alexander Koch a.koch@haw-hamburg.de

POSTER OHNE BREAKOUT-SESSIONS

FAKULTÄT TECHNIK UND INFORMATIK Department Maschinenbau und Produktion

Grenzwertorientierte Effizienzbewertung von Power-to-X-Systemen

BEWERTUNG VON WASSERSTOFF-TECHNOLOGIEN AUF BASIS IDEALISIERTER REFERENZMODELLE

Die energetische Umwandlung und stoffliche Nutzung fossiler Energieträger kann als Hauptgrund für die Emission von Treibhausgasen identifiziert werden. Regenerative Energieträger haben, besonders unter Einsatz der sogenannten Power-to-X (PtX) Technologien, ein hohes Potenzial der

Reduzierung des Bedarfes an fossilen Energieträgern.

Neben der politischen Situation führt besonders die derzeitige Energieeffizienz bestehender PtX Systeme zu einer geringen Akzeptanz dieser Technologien in Industrie und Gesellschaft. Das Potenzial dieses Ansatzes bleibt jedoch bei der bisherigen Effizienzbewertung unbeachtet. Bestehende für die Effizienzbewertung herangezogene Kennzahlen bilden das tatsächliche Effizienzpotenzial nur selten ab.

Grundlagen des Physikalischen Optimums

Das Physikalische Optimum (PhO) beschreibt ein statisches idealisiertes Referenzmodell, welches durch Berücksichtigung der Naturgesetze die Grenze der Optimierbarkeit und damit das maximale Potential eines technischen Prozesses beschreibt. [4]

Physikalisch unvermeidbare Verluste¹ werden einbezogen, sodass durch die Differenz des realen Prozesses zum PhO das tatsächliche Optimierungspotential bestimmbar ist.

Anwendung am Beispiel der Wasserelektrolyse

Definition des energetischen Wirkungsgrades

$$\eta_{energetisch} = \frac{E_{nutz}}{E_{zu}} = \frac{E_{Wasserstoff}}{E_{elektrisch}} = \frac{V_{H_2} * H_s}{U * I * t}$$

Definition des Faraday'schen Wirkungsgrades

$$\eta_F = \frac{n_{H_2real}}{n_{H_2,reversibel}} = \frac{U_{reversibe}}{U_{real}}$$

Definition des PhO-Faktor
$$n_{H_2real}$$
 U_{PhO}

$$F_{PhO} = \frac{1}{n_{H_2,PhO}} = \frac{1}{U_{real}}$$

Weiterentwicklungsansätze

Da die PtX-Technologien auch chemische und biochemische Stoffumwandlungsprozesse umfassen, ist eine statische Beschreibung des idealisierten Referenzprozesses für die Effizienzbewertung nicht hinreichend. Das tatsächliche Optimierungspotential sowie konkrete Handlungsempfehlungen für die Verbesserung dieser Prozesse lassen sich nur unter Berücksichtigung der Kinetik ableiten. Aus diesem Grund wird eine Weiterentwicklung des PhOs zu einem Multi-Kriterien-PhO untersucht, welches Modelle für die Sicherstellung der Betriebsbedingungen eines

chemischen oder biochemischen Reaktors mit der Kinetik der Stoffumwandlung verbindet. In Abhängigkeit von Parametern, wie den Umgebungsbedingungen, dem eingesetzten Katalysator, der Edukt -Zusammensetzung oder der Aktivität der Mikroorganismen kann so ein jeweils individuelles PhO gebildet werden, was dynamisch auf die genannten Kriterien reagiert. So kann sichergestellt werden, dass bei der Berechnung des Optimierungspotentials beispielsweise die ideale Verweilzeit im Reaktor berücksichtigt wird.

Bilanzierungsschema für die Methode des Physikalischen Optimums

Definition unvermeidbarer Verluste

Die Definition unvermeidbarer Verluste¹ kann je nach Zeitpunkt der Bestimmung variieren. Es wird zwischen zwei Fällen unterschieden.

1. Bewertung während der Planung und Auslegung eines Prozesses

Verluste, die sich aus den Naturgesetzen zur Beschreibung des Prozesses ergeben sind unvermeidbar.

Bewertung des Betriebes eines Prozesses Verluste, die nur durch bauliche Veränderungen, nicht aber durch Anpassung der Betriebsbedingungen, beeinflusst werden können, sind unvermeidbar.

Graphischer Vergleich des Physikalischen Optimums mit dem Wirkungsgrad der Wasserelektrolyse (Darstellung in Anlehnung an [4])

HAW-HAMBURG.DE

¹ Als Verluste werden im Kontext der Effizienzbewertung jene Stoff- und Energieströme des Aufwandes bezeichnet, die nicht im Nutzen resultieren.

- Colla M, Ioannou A, Falcone G. Critical Review of Competitiveness Indicators for Energy Projects. Renewable and Sustainable Energy Reviews 202 0(125).
- ^[2] Angelakoglou K, Gaidajis G. A review of methods contributing to the assessment of the environmental sustainability of industrial systems. Journal of Cleaner Production 2015;108(7):725 47.
- ^[3] Menghi R, Papetti A, Germani M, Marconi M. Energy efficiency of manufacturing systems: A review of energy assessment methods and tools. Journal of Cleaner Production 2019;240:118276.
- [4] VDI 4663 Blatt 1: Bewertung von Energie und Stoffeffizienz Methodische Anwendung des Physikalischen Optimums. VDI Richtli nie, 2019

KONTAKT

Natascha Eggers, M.Eng. Natascha.eggers@haw-hamburg.de

FAKULTÄT TECHNIK UND INFORMATIK Department Informatik

Audiovisuelle Virtual Reality zur Kommunikation der Auswirkung schallemittierender Anlagen

KANN EINE REALISTISCHE AUDIO-VISUELLE SIMULATION GENERATIV REALISIERT WERDEN?

Ein wesentlicher Faktor bei der Ablehnung von Windenergie-Anlagen ist die erwartete Lärmbelastung. Während diese Erwartung durch frühe Anlagen nicht ganz unbegründet ist, erscheint sie heute dennoch etwas fehlgeleitet. Eine immersive audio-visuelle Simulation eines Windparks kann eine

faktenbasierte Diskussionsgrundlage schon im Planungsstadium bieten wenn der Aufwand zur Produktion niedrig gehalten werden kann.

Nachbildung des Windparks Curslack in Unreal Engine 4

Simulierte Geräuschquellen am WKA-Flügel: Blattspitze (orange) und Blatthinterkante (grün)

Um zukünftige Szenarien in Virtual Reality abzubilden, ist die teilweise oder vollständige Rekonstruktion eines virtuellen Modells notwendig. In klassischen Virtual Reality Produktion ist die Erzeugung einer stimmigen und je nach Zweck realistischen Umgebung das Řesultat eines langwierigen, meist künstlerischen Prozesses. Wenn diese Technologie zur Kommunikation realer Auswirkungen benutzt werden soll, spielt der Realismus der erzeugten Umgebung eine deutlich größere Rolle und erfordert eine Unterfütterung kreativer Designentscheidungen durch wissenschaftliche Prinzipien. Andernfalls bleibt die Simulation ein künstlerisches Produkt welches nur geringen Anspruch auf Realismus stellen kann. Dies trifft sowohl auf die visuellen Inhalte, wie auch auf die auditiven zu.

UMGEBUNGSREKONSTRUKTION MITTELS GEO-DATEN

Geodatenlayer und die daraus generierte Umgebung um den Windpark Curslack.

AKUSTISCHE SIMULATION

Damit eine so erzeugte Umgebung die Möglichkeit bietet, sich frei in ihr zu bewegen ist es erforderlich, dass einige Parameter der akustischen Simulation zur Laufzeit manipuliert werden. So hängen viele akustische Effekte zum Beispiel vom zeitlichen Verlauf der relativen Position von Sender und Empfänger zueinander ab.

Übersicht: Pipeline für räumliche, akustische Simulation von Punktschallquellen

In der Praxis werden Schallerzeugung, Schallausbreitung sowie Schallempfang getrennt voneinander simuliert. Dabei wird der Schall zunächst so modelliert wie er sich an der Quelle anhört, also ohne Beeinflussung durch die Umgebung. Im zweiten Schritt wird die Ausbreitung des Schalls von der Quelle zum Empfänger modelliert. Hierbei spielt eine Fülle an Effekten eine Rolle die zum Teil unter Berücksichtigung der visuellen Geometrie berechnet werden. Das Ergebnis ist ein Soundfeld, das alle hörbaren Schallquellen aus ihren jeweiligen Richtung encodiert. Im letzten Schritt wird dieses Soundfeld in Blickrichtung rotiert und auf die gewünschte Lautsprecherkonfiguration oder mittels kopfbezogener Transferfunktionen (HRTF) für Kopfhörer gerendert. In jedem der drei Simulationschritte spielen Laufzeitparameter eine Rolle die das am Ende empfangene Audiosignal teilweise signifikant beeinflussen. Durch die transparente Natur von Geräuschen ist auch aus Messungen nicht immer offensichtlich, welche Parameter für den beobachteten Effekt verantwortlich sind.

Anspruch einer realistischen Simulation lässt dieses Vorgehen allerdings nicht zu. Für eine informierte Simulation ist die Berücksichtigung physikalischer Gesetze der Akustik notwendig um ambivalente Beobachtungen aufzuklären. Während bisherige Frameworks für Soundscapes sich vor allem auf Aufnahme und Wiedergabe beziehen, geben sie nur limitierte Vorgaben für synthetische, simulierte Soundscapes. Ein methodisches Framework, welches sich auf die spezifischen Aspekte der drei Simulationsschritte bezieht, soll zur Verkleinerung des Variablenraums der akustischen Šimulation führen und somit dazu beitragen die Produktionszeit realistischer, audio-visueller Virtual Reality Umgebungen zu verkürzen.

Aufnahmen werden analysiert um Synthesemodelle und -Parameter zu gewinnen. Durch Vergleich von Aufnahme mit Synthese soll die Ähnlichkeit verifiziert werden.

Mit zunehmenden Standardisierungsbemühungen werden öffentliche Geo-Daten eine wertvolle Ressource zur Rekonstruktion real existierender Landschaften in Virtual Reality. Durch eine Integration von Bibliotheken für gängige Geo-Daten Formate können diese in dies virtuelle Umgebung importiert werden und mittels datengetriebener Generierung die Zeit zum Erstellen der visuellen Umgebung drastisch reduzieren. Aus einem digitalen Geländemodell kann die Landschaftsgeometrie geformt werden, ein Bodenbedeckungsmodell definiert Texturen und Vegetation, weitere Vektordaten können genutzt werden um Gewässer, Häuser und Strassen zu generieren.

RESEARCH QUESTION

Während die Erzeugung der visuellen Umgebung relativ einfach automatisierbar ist, tauchen bei der Modellierung der akustischen Umgebung ein Fülle an Fragen auf, die bei der Spieleentwicklung als kreative Designentscheidungen gefällt werden. Der

Neuere Forschung zur Evaluierung von virtuellen Umgebungen geht davon aus, dass reine Nutzerstudien nicht ausreichen um die ökologische Validität der Simulation zu bestimmen. Dies wird mit dem unvollständigen Verständnis des menschliches Kognitionsprozesses erklärt. Eine Erweiterung von Nutzerstudien durch parallele, psychologische Verhaltensstudien verwendet das Verhälten der Benutzer in der virtuellen Umgebung als zusätzliche Dimension zur Evaluierung. Eine Möglichkeit zum algorithmischen Vergleich aufgenommener und synthetisierter Geräusche könnte als unabhängiger Validierungsfaktor dienen, der nicht von der menschlichen Kognition abhängig ist.

KONTAKT

Forschungsschwerpunkt Immersion in Virtual Reality, Computergrafik, 3D Rekonstruktion, Spatial Audio

Iwer Petersen +49 40 42875 8520, iwer.petersen@haw-hamburg.de